Portfolio 2

Sample

Salmon 1

Using
$$f(x) = \overline{x} - x^3$$
, we can use the formulas
 $\overline{x} = \frac{1}{A} \int_{-\infty}^{b} xf(x)dx$, $\overline{y} = \frac{1}{A} \int_{-\infty}^{b} \frac{1}{2}(f(x))^2 dx$
to compute the canter of mass. Thus,
 $\overline{x} = \frac{1}{372} \int_{-\infty}^{b} x(\overline{x} - x^3) dx$
 $= \frac{12}{5} \int_{-\infty}^{b} x^{3/2} - x^4 dx$
 $= \frac{12}{5} \left(\frac{x}{572} - \frac{x}{57}\right) \int_{0}^{1} \frac{1}{6}$
 $= \frac{12}{5} \left(\frac{2}{5} - \frac{1}{5}\right)$
 $= \frac{12}{25}$
 $\overline{y} = \frac{1}{712} \int_{0}^{b} \frac{1}{2} (\sqrt{x} - x^3)^2 dx$
 $= \frac{6}{5} \int_{0}^{1} (x^{1/4} - x^3)^2 dx$
 $= \frac{6}{5} \int_{0}^{1} x - 2x^{3/2} + x^{5} dx$
 $= \frac{6}{5} \left(\frac{1}{2} - \frac{2}{9}x^{3/2} + \frac{x^{7}}{7}\right) \int_{0}^{1}$

Therefore the center of mass of the given region is (12, 5).

Salmon 4 2. Determine if the sequence {an } defined below converges or diverges. If it converges, find the limit. $a_n = \frac{3^{n+2}}{5^n} .$ Solution: Consider lim an = lim 3n+2 n-200 n-200 5n $= \lim_{n \to \infty} 3^2 \left(\frac{3}{5}\right)^n$ $= O \left(\operatorname{Since} \left| \frac{3}{5} \right| < 1 \right).$ Thus, Jan Converges to O.

3. For which values of x does the series $\frac{\sum_{n=0}^{\infty} \frac{(x+4)^n}{3^n}}{3^n}$ converge? For those values, find the sum of the series. Solution: Note that $\sum_{n=0}^{\infty} \frac{(x+y)^n}{3^n}$ is a geometric series with common ratio $r = \frac{x+y}{3}$. Hence, the series will converge for 1-1-1. That is, $\left|\frac{\chi+\gamma}{3}\right| < |$ $-1 < \frac{X+Y}{3} < 1$ -3 < x+4 < 3 -7 < x < -1. Therefore, $\sum_{n=0}^{\infty} \frac{(x+4)^n}{3^n}$ will converge for x satisfying -7 < x < -1. Now, suppose x is in (-7, -1). The first term of the series is $\frac{(x+4)^{\circ}}{3^{\circ}} = 1$. so the sum of the series is $\frac{50}{N=0} \frac{(x+y)^n}{3^n} = \frac{1}{1-(\frac{x+y}{3})}.$

Salmon le 4. Use the integral test to determine if the series converges ar diverges. Solution: Consider the function $f(x) = \frac{1}{f(x)}$ on the interval [2, 00). Note that for any x in [2,00) or any positive integer n, both negralities below hold: $\frac{1}{x \ln(x)} > 0$ and $\frac{1}{x \ln(h)} > 0$. Further, f is continuous on [2,00) and decreasing an , co) (as x and ln (x) are both moreasing functions). Now, consider the improper integral $\int_{-\infty}^{\infty} \frac{1}{x \ln(x)} dx$. By definition, we have $\int_{-\infty}^{\infty} \frac{dx}{x \ln(x)} dx = \lim_{x \to \infty} \int_{-\infty}^{\infty} \frac{dx}{x \ln(x)} dx \qquad (u = \ln(x)) = \lim_{x \to \infty} \int_{-\infty}^{\infty} \frac{dx}{x \ln(x)} dx = \lim_{x \to \infty} \int_{-\infty}^{\infty} \frac{dx}{x \ln(x)} dx = \lim_{x \to \infty} \int_{-\infty}^{\infty} \frac{dx}{x \ln(x)} dx = \int_{-\infty}^{\infty} \frac{dx}{x \ln(x)} dx$ $= \lim_{t \to 0} (\ln |u|) |_{2}^{t}$ = lin ln (t) t-300 ln (t) = 📿 .

Since $\frac{500}{2 \times h(x)}$ dx diverges, the series $\frac{500}{2 \times h(x)}$ diverges by the integral test. $\frac{500}{2 \times h(x)}$ diverges by the integral test.

5. Determine if $\sum_{n=1}^{\infty} \frac{1}{e^n + h^2}$ converges or diverges. Solution: Let $a_n = \frac{1}{e^n + h^2}$ and let $b_n = \frac{1}{h^2}$. Note that for all positive integers n, an and by are positive. Further, we have that $\frac{e^n + n^2 > n^2}{S^p} \leq \frac{1}{e^n + n^2} = b_n.$ We know that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by the p-test (p=z'>1). n=1 n^2 converges by the Hence, b the direct comparison test, $\sum_{n=1}^{\infty} \frac{1}{e^n + n^2}$ also converges.

Salmon 9 Converges or diverges. 6. Determine if $\sum_{n=1}^{\infty} \frac{n^2 - n + 5}{n^3 - 3n + 6}$ Solution: Define $a = \frac{n^2 - n + 5}{n^3 - 3n + 6}$ and $b_n = \frac{1}{n}$. Note that a and be are positive for all positive integers n. Conside $\frac{n^2-n+5}{n^3-3n+4}$ $h \to \infty$ be n \to \infty $= \lim_{n \to \infty} \frac{n^2 - n + 5}{n^3 - 3n + 6} \cdot \frac{n}{1}$ $= \lim_{n \to \infty} \frac{n^3 - n + 5}{n^3 - 3n + 6}$ Also, $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n} diverges by the p-test (p=1).$ Since lim $\frac{\alpha_n}{b_n} = 1 > 0$, by the limit comparison test, $\sum_{n=1}^{n^2-n+5} \frac{n^2-n+5}{n^3-3n+6} \text{ diverges.}$